Probabilistic properties of fitness-based quasi-reflection in evolutionary algorithms

نویسندگان

  • Mehmet Ergezer
  • Dan Simon
چکیده

Evolutionary algorithms (EAs) excel in optimizing systems with a large number of variables. Previous mathematical and empirical studies have shown that opposition-based algorithms can improve EA performance. We review existing opposition-based algorithms and introduce a new one. The proposed algorithm is named fitness-based quasi-reflection and employs the relative fitness of solution candidates to generate new individuals. We provide the probabilistic analysis to prove that among all the opposition-based methods that we investigate, fitness-based quasi-reflection has the highest probability of being closer to the solution of an optimization problem. We support our theoretical findings via Monte Carlo simulations and discuss the use of different reflection weights. We also demonstrate the benefits of fitness-based quasi-reflection on three state-of-the-art EAs that have competed at IEEE CEC competitions. The experimental results illustrate that fitness-based quasi-reflection enhances EA performance, particularly on problems with more challenging solution spaces. We found that competitive DE (CDE) which was ranked tenth in CEC 2013 competition benefited the most from opposition. CDE with fitnessbased quasi-reflection improved on 21 out of the 28 problems in the CEC 2013 test suite and achieved 100% success rate on seven more problems than CDE. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Determination of Optimal Parameters for Finite Plates with a Quasi-Square Hole

This paper aims at optimizing the parameters involved in stress analysis of perforated plates, in order to achieve the least amount of stress around the square-shaped holes located in a finite isotropic plate using metaheuristic optimization algorithms. Metaheuristics may be classified into three main classes: evolutionary, physics-based, and swarm intelligence algorithms. This research uses Ge...

متن کامل

PMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver

In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...

متن کامل

Estimation of LPC coefficients using Evolutionary Algorithms

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & OR

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015